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Chapter 5 
 
 

Adaptive Dirichlet distributions with dependent ratios 
 
 
5.1 Introduction 

 
Krzysztofowicz and Reese (1993) modeled a vector of fractions  x  via 

a sequence of random variables , called ratios of fractions, with 0<y

= +( , , , )x x xn n1 1L

y y n1, ,L i<1 for all i as 

shown in Figures 3.1-3.3. The mutual independence of these ratios was one of the main 

assumptions that led to the adaptive Dirichlet distributions that they propose. In this chapter 

we will relax the assumption of independence and propose a new model for compositional 

data via a method that has become popular in recent years, copulas. This method allows us to  

construct joint densities with arbitrary marginal distributions and arbitrary correlation 

coefficients. Moreover, the correlation coefficient remains unchanged even with changes in  

the marginal distribution functions. 

As discussed in section 3.4, let T be the one-to-one transformation from the vector of 

ratios y  to the compositional vector x= . Hence, given a joint 

density (y), the joint density g(x) is specified by 

= ( , , )y y n1 L ∈

) )

) ,

( , , )x x Sn
n

1 L

0g

)(),,()( 10 TJyygg nL=x , 
 

where  is the Jacobian of the transformation T. Note that the ratios can have different 

dependence structures. For example, the joint density of ratios y

J T( )

1, y2, and y3 can have one of 

the following forms: ; ; ; or 

, where  and  are multivariate densities and  and 

),,( 3210 yyyg g y g y y1 1 23 2 3( ) ( , g y g y y2 2 13 1 3( ) ( ,

g y g y y3 3 12 1 2( ) ( , ,,, 13230 ggg g 12 g g1 2,
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g 3  are univariate densities. The multivariate densities  and  can be 

constructed in several ways, including by means of copulas, as mentioned above. 

,,, 13230 ggg g 12

Section 5.2 gives a motivation for our new model via some examples, as well as via a 

comparison between the correlation sign structures resulting from adaptive Dirichlet 

distributions with independent and dependent ratios. Section 5.3 will introduce our approach  

for achieving dependent ratios by means of bivariate copulas. 

 
5.2 Motivation for our new model  
 
5.2.1 Examples 
 
a) Diagnosis problem:  
 
Consider two serious illnesses of the lungs, pneumonia and emphysema. These two illnesses 

may be alternative ways of accounting for some of the same symptoms. In this medical 

context the "ratios" may be quantities such as the conditional probability that a patient with 

particular symptoms has emphysema, given that the patient does or does not have 

pneumonia. Since these are conditional probabilities for the same event under somewhat 

different conditions, it is clear that they might be correlated. Because of that, none of the 

existing adaptive Dirichlet distributions can model this kind of problem. Along the same 

lines, one could also consider lung cancer and bronchitis, since it is known that both diseases 

are caused by smoking. 

b) Snowmelt runoff problem: 
 
Reese and Krzysztofowicz (1991) applied the adaptive Dirichlet distribution to snowmelt 

runoff. In particular, they analyzed monthly snow runoff data for 14 western United States 

rivers. They were interested particularly in the fraction of total annual runoff occurring in 
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each month. In describing the statistical nature of snowmelt runoff patterns, they found that 

the correlations among these fractions were a reasonable way to characterize the seasonal 

patterns at particular rivers. Reese and Krzysztofowicz hypothesized that the vector of 

fractions was generated from an adaptive Dirichlet distribution, and tests of that assumption 

were performed. They found the model valid for about one-half to two-thirds of the rivers 

tested, and therefore concluded that the adaptive Dirichlet distribution was useful, but not 

sufficiently general, because it was restricted by two structural assumptions: first, that the 

composition is stochastically independent of the size of the basis (i.e., the total seasonal 

runoff); and second, that the ratios are mutually independent. In fact, one or both of these 

assumptions are violated by some rivers. Thus, they dispute the modelers to construct 

multivariate distributions on the simplex that could fit the remaining rivers whose seasonal 

runoff patterns exhibit different dependence structures than can be represented using their 

model. In chapter 8 of this proposal, we will discuss the latter problem in more detail and 

outline our proposed approach for resolving it. 

 
5.2.2 Correlation sign structure 
 

Table 5-1 below, given by Krzysztofowicz and Reese (1991), shows the correlation sign 

structures obtainable from the topology in Figure 5.1 in the case where the ratios y1, y2, and 

y3 are mutually independent. Table 5-2 shows the correlation sign structures obtainable from 

the same topology when cov(y1, y3)>0.  In addition, the sign structure  

+
+−
−++

  may also be achievable, but we have not been able to either confirm or refute 

this. It is clear from these tables that the adaptive Dirichlet distribution that would result 
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from Figure 5.1 with dependent ratios is an improvement over the one that would result from 

the same figure with independent ratios, in the sense that a much broader range of correlation 

sign structures can be obtained. 

 
       1-y2

         y2

              1-y1                                                   1-y3

 
     y1                               y3
 

            x1             x2                x3           x4  
              

Figure 5.1 Double-cascaded bifurcation topology of four fractions (taken from Krzysztofowicz and 

Reese, 1991). 

 

 

 
Table 5-1 

Correlation sign structures obtainable from Figure 5.1 

when the ,  i=1,2,3, are independent y i

___________________________________________________________ 
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Table 5-2 

Correlation sign structures known to be obtainable from Figure 5.1 

when  and ( ,   are independent and cov(yy 2 )y y1 3 1,y3) > 0   
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We have  
 

x y y1 1= 2

y 2

y 3

y 3 )

, 
 
x y2 11= −( ) , 
 
x y3 21= −( ) , and 
 
x y4 21 1= − −( )( . (5.1) 
 
This system of four equations has a unique inverse: 
 

y x
x x1

1

1 2

=
+

, 

 
y x x2 1= + 2 ,  
 

y x
x x3

3

3 4

=
+

, and 

 
x x x x1 2 3 4 1+ + + = . 

 
Assuming that and  are correlated, but independent of  and using equations (5.1) 

above, we get 

y 1 y 3 y 2
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2

211
2
21121 )(E)1(E)(E)(E))1((E),cov( yyyyyyxx −−−=  

)(E)(E)1(E)(E)(E))1((E),cov( 3122312231 yyyyyyyyxx −−−=   

)var()(E)(E),cov())1((E 2313122 yyyyyyy −−=  

)1(E)(E)1(E)(E))1((E))1((E),cov( 2231223141 yyyyyyyyxx −−−−−=  

)var()(E),cov( 2131 yyxx −−=  

)1(E)(E)1(E)(E))1((E))1((E),cov( 1322132232 yyyyyyyyxx −−−−−=  

)var()(E),cov( 2331 yyxx −−=  

)1(E)(E)1(E)1(E))1((E))1)(1((E),cov( 2231223142 yyyyyyyyxx −−−−−−−=  

)var())(E)(E1(),cov( 23131 yyyxx −−−=  

2
233

2
23343 )1E()1(E)(E))1((E))1((E),cov( yyyyyyxx −−−−−=  (5.2) 

Utilizing the above equations, one can show analytically that if cov(y1,y3) > 0, then the 

general matrix of signs must be of the form 

± ± −
− ±

±
 

 
We have demonstrated by example (Table B-0) that 15 of the 16 possible sign structures 

(those shown in Table 5-2) are in fact achievable. (As mentioned earlier, we have not been 

able to confirm whether the 16th case is achievable.).  

 
If cov(y1,y3) = 0, then we have 
 

0)var()(E)(E),cov( 23131 <−= yyyxx , 

0)var())(E1)((E),cov( 21332 <−−= yyyxx   
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0)var())(E1)((E),cov( 23141 <−−= yyyxx , and 

0)var())(E1))((E1(),cov( 23142 <−−−= yyyxx . (5.3) 

 
Thus, in this case we just get Table 5-1, confirming the results given by Krzysztofowicz and 

Reese. 

Finally, if cov(y1,y3) < 0 (i.e., E(y1y3) < E(y1)E(y3)), then the general matrix of signs must 

be of the form 

±
−±
±−±

 

 
Once  again, we have been able to demonstrate by example that many of these sign structures 

are achievable, but are unsure whether all 16 cases are possible. 

 
5.3 Copula model for achieving dependent ratios 
 
5.3.1 Introduction 
 

Copulas are functions that can be used to specify multivariate distributions with any 

specific set of univariate marginal distributions. For the 2-dimensional case, if  F(x) and G(y) 

are cumulative distribution functions (cdf's) for random variables X and Y, then there exists a 

2-dimensional copula C such that the multivariate cumulative distribution H(x,y) can be 

expressed in the form 

 
H(x,y) = C(F(x),G(y))  (5.4) 
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for all x and y in ℜ (Schweizer and Sklar, 1983). Hence, the function C has domain [0,1]2 

and range [0,1]. Suppose that X (respectively, Y) is beta distributed with parameters 1α  and 

 (respectively,  and ). Then, the joint probability density function satisfies 1β 2α 2β

),(H),(h
2

yx
yx

yx
∂∂
∂

=  

)(g)(f))(G),(F(c yxyx=   

∝ , (5.5) 1111 2211 )1()1())(G),(F(c −β−α−β−α −− yyxxyx

 
where tststs ∂∂∂= ),(C),(c 2 is the copula density function. 
 

Copulas allow us to assess joint distributions with particular values for the marginal 

moments, because the marginals of H(x,y) are simply equal to F(x) and G(y), so the marginal 

moments of the joint distribution H(x,y) are equivalent to those of F(x) and G(y). Also, some 

copulas are capable of representing dependence structures ranging from perfect negative to 

perfect positive correlation. 

In the next section, we use Frank's copula (Frank, 1979; Genest, 1987) to show the 

feasibility of achieving dependent rather than independent ratios in Krzysztofowicz and 

Reese's model. However, in the literature, there are also many other kinds of bivariate 

copulas, such as these proposed by Gumbel (1961), Cook and Johnson (1981),  and Ali, 

Mikhail, and Haq (1978).  

Two important issues in choosing the copula C are: 1) the ability to describe strong 

positive or negative correlations; and 2) simplicity of computations. For the application that 

will be given in chapter 8, a suitable range of correlation coefficients is more important than 
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computational convenience. Therefore, we use Frank's copula here since it  allows a full 

range of correlations from -1 to 1 (Frank, 1979; Genest, 1987; Yi, 1997). 

 
5.3.2 An approach using  Frank's copula 
 

This section introduces a specific method of constructing generalized adaptive Dirichlet 

distributions with dependent ratios. Dependency among the ratios is represented by means of 

Frank's copula (Frank, 1979; Genest 1987). Some of the properties of Frank's copula are 

summarized. 

 
The class of bivariate distributions of the form  
 

P X x Y y H x y
x y

( , ) ( , ) log ( )(
≤ ≤ = = +

− −
−

⎧
⎨
⎩

⎫
⎬
⎭

α α
α α

α
1 1 1

1
)    (α≠1), (5.6) 

 
where X and Y are uniformly distributed over [0,1] and logα(t) denotes logarithm to the base 

α>0, was discovered by Frank (1979). Each member of the family (5.6) is absolutely 

continuous and has full support over the unit square except when α=0 or ∞, in which case 

Y=X or Y=1-X, respectively. When 0<α<∞, the density corresponding to Hα is given by  

 

h x y
x y

x yα
α α α

α α α
( , ) ( ) log( )

{( ) ( )( )}
=

−
− + − −

+1
1 1 1 2    ( , )0 1< <x y ,  (5.7) 

 
where  tends to 1 as α approaches 1 (corresponding to the case where x and 

y are uncorrelated). 

h x yα ( , ) ∀ x y,

It is possible to construct families of bivariate distributions with non-uniform marginals 

by means of the method of translation (Nataf, 1962), as Genest (1987) has noted. The general 

form of the resulting cumulative distribution function (cdf) is given by 
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H x y
F x G y

α α
α α

α
( , ) log ( )(( ) ( )

= +
− −

−
⎧
⎨
⎩

⎫
⎬
⎭

1 1
1

)1

x

    (α≠1), (5.8) 

 
with arbitrary marginals F(x) and G(y). Depending on the choice of the parameter α, these 

distributions allow for highly positive or negative correlation between X and Y. 

Consider the topology given in Figure 5.1. Assume that y1 depends on y3 and that both 

are independent of y2. Hence, given a joint density g13(y1,y3) and a density g2(y2), the joint 

density would be given by g ( )x

g g y g y y J( ) ( ) ( , ) ( )x y= →2 2 13 1 3 ,  (5.9) 
 

where = J ( )y x→ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 4321

11
xxxx

 is the Jacobian of the transformation from y x→ . 

 
Lett g2(y2) be a beta density and  
 

)()(
)}1)(1()1{(

)log()1(),( 33112)()(

)()(

3113 3311

3311

ygygyyg yGyG

yGyG

−δ−δ+−δ
δδ−δ

=
+

 (5.10) 

 
(i.e., let g13(y1,y3)  be one of Frank's family of distributions), where the marginals G1(y1) and 

G3(y3) are the cumulative distribution functions (cdf's) of beta distributions 

(i.e., , i=1,2,3). Then the joint density of x  is given by ),(~ iii Bey βα

 
2)()(

)()(
3

1 )}1)(1()1{(

)log()1(
)()(
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3321123311 )()( 4321

1
4

1
3

1
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1
1

β−α−ββ−α−α−β−α−β−α ++ xxxxxxxx . (5.11) 
 

As one can see, this joint density function is closed form (except for the dependence on G1 

and G3), but not very simple or computationally tractable. 

 

  


