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Chapter 4 
 
 

Liouville distributions and their generalization 
 

Joseph Liouville (1809-82) generalized the Dirichlet integral to the Liouville multiple 

integral over the positive orthant  (e.g., see Edwards, 1922, p. 160; Whittaker and 

Watson, 1952; Fichtenholz, 1967, p. 391). Marshall and Olkin (1979) use this integral to 

define the so-called "Liouville-Dirichlet" distributions. Sivazlian (1981a) focused on 

deriving the Dirichlet and beta distributions from the generalized Liouville family. Sivazlian 

(1981b) introduced two kind of Liouville distributions and show that these new classes could 

be used to derive some well-known statistical distributions. Anderson and Fang (1982, 1987) 

study a subclass of Liouville distributions, and Gupta and Richards (1987, 1990, 1991, 1992, 

1995) give a more comprehensive treatment of the multivariate Liouville distributions and 

also extend some results to their matrix analogues. Rayens and Srinivasan (1994) give some 

results on the generalized Liouville distributions on the unit simplex. Smith (1994), starting 

from generalized Liouville distributions on the positive orthant, introduces the so-called 

conditional generalized Liouville distributions and gives some of their properties. Gupta and 

Song (1996) study some properties of the generalized Liouville distribution, give a one-to-

one correspondence between two kinds of generalized Liouville distributions, and derive the 

stochastic representations and marginal and conditional distributions of this family. All of the 

authors mentioned above use the so-called "Liouville integral" (Fang et al., 1990)  or its 

extension (Sivazlian, 1981a) in their approach.  

ℜ+
n
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Fang et al. (1990) devote a chapter to the standard Liouville distributions, using an 

alternative approach that we follow in section 4.1. This approach makes dealing with these 

distributions much easier. Also, this approach is a helpful tool for investigating the 

covariance structures of Liouville random vectors. This tool is unlike the one used by Gupta 

and Richards (1987) for this purpose, which Rayens (1993) recently showed to be  of limited 

use on a simplex sample space. In section 4.2, we will define the generalized Liouville 

distribution on the simplex (Rayens and Srinivasan, 1994). In section 4.3 we will use the 

approach of Fang et al. to introduce generalized Liouville distributions on the positive 

orthant as well as conditional generalized Liouville distributions. Our conclusions will be 

given in section 4.4. In all of these sections, we will adopt the notation used by Fang et al. 

(1990). 

 

4.1 Liouville distributions 
 
Liouville distributions can be viewed in some sense as extensions of the Dirichlet 

distribution to the positive orthant. In particular,  

Definition 4.1 A random vector x in  is said to have a Liouville distribution if  xℜ+
n =

d
r.y, 

where ~y = ( , , ..., )y y y n1 2 D n (α)  on  and r is an independent r.v. with p.d.f. H n f ; in 

symbols, . We shall call y the Dirichlet base, x ~ ( ;L fn α ) α  the Dirichlet parameter, r the 

generating variate, and f  the generating density. 

It should be noticed immediately that when r=1 with probability one, the Liouville 

distribution reduces to the Dirichlet distribution D n (α)  on . Later in this dissertation we H n
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will consider an extension to the Liouville distribution by allowing for non-Dirichlet base 

(e.g., adaptive Dirichlet base). 

Theorem 2.1 stated that the Dirichlet distribution can result from an independent basis in 

which each element is gamma distributed and all of these distributions have the same scale 

parameter. In fact, from definition 4.1, the Dirichlet distribution can also result from many 

bases that do not have independent elements. This is easily seen by noting that, since 

, we have y ∈H n y y y n1 2 1+ + + =... .  Also, it is clear from the definition above (as noted by 

Fang et al, 1990) that  if and only if x ~ ( ;L fn α ) ( , ..., ) ~x x x xi in nD1 ∑ ∑ α( )  on H  

and is independent of the total size  (equivalent to the r.v. in the definition of the 

Liouville distribution).  

n

xi∑

The following theorem gives the density function of a Liouville distribution with 

generating density function f ; the proof can be found in Fang et al. (1990). 

Theorem 4.1 The density function of a Liouville distribution with generating density function 

f  is given by  
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This density is defined on the a-simplex S x if and only if  x xa

n
n ii

n= < ∑ ={( ,..., )| }1 10 f  

is defined on the interval (0,a). Fang et al. noted that if the generating density f  is defined 

only on the interval (0,1), then equation (4.1) above provides an alternative to the logistic 

normal class of distributions for compositional data. 

Note that equation (4.1) can also be written in the form  
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where 
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1 , for all t  (4.3) > 0

 
Here, (.) is called the density generator of the Liouville distribution, to identify it from the 

generating density function 

h

f . Throughout this proposal, we adopt the notation used by 

Fang et al. (1990), who use L fn ( ; )α  for a Liouville distribution with generating density 

function f , and  for a Liouville distribution with density generator h . L hn ( ; )α

 
Remark 4.1  
 
It is fairly easy to show that 

i) If  , then x ~ ( ;L fn α ) f Be b~ ( ,*α ) ) if and only if  x ~ ( , ..., ;D bn nα α1  on S . n
1

ii) If   and x ~ ( ;L fn α ) α α α αj j n n− − − − >+ −1 1 0...  for all j n= −2,..., 1, then  

 f Be a b~ ( , )

)

 if and only if ( ,  on S , where ,..., ) ~ ( $ , $ )1 1 1 1− ∑ = −x x x CMii
n

n n α λ n
1

),...,ˆ 11 −αα( nb,=α  and . ),,...,...,...ˆ
14332 nnnnna αα−αα−−α−αα−−α−α( −,=λ

iii) If , then by equation (4.1), x L f~ ( ;1 α f   is the density function of x . 

Sivazlian (1981b) refers to Liouville distributions on the a-simplex S  as Liouville 

distributions of the first kind  when a

a
n

= ∞ , and Liouville distributions of the second kind 

when . However, there is room for confusion, since Fang et al. (1990) use the term 

Liouville distributions of the second kind for distributions on  for any . Therefore, 

in this thesis, we will refer to Liouville distributions on S  as Liouville distributions on the 

positive orthant  when a , and Liouville distributions on the unit simplex when 

1=a

S a
n a < ∞

a
n

= ∞ a =1, 

and will write  or  for Liouville distributions on the positive orthant and L fn
( ) ( ; )∞ α L hn

( ) ( ; )∞ α
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L fn

( ) ( ; )1 α  or L h  for Liouville distributions on the unit simplex when there is a need to 

distinguish between them. 

n
( ) ( ; )1 α

Gupta and Richards (1991) consider a Liouville distribution with density of the form 
 

g(x) (= )+ ⋅ ⋅ ⋅ +− −Ax x f x x
n

nn
1

1 1 11α α

θ
L  

 
for . They discuss applications of this distribution to reliability theory, as well as 

estimation of  bothθ  and  when 

x i > 0

α i α α1 = =L n . 

 
Liouville distributions on the unit simplex provide an infinite class of distributions for 

modeling compositional data. Fang et al. (1990) show that Liouville distributions have the 

following nice mathematical properties: 

 
Theorem 4.2 Let  , such that  has zero probability at the origin and x ~ ( ;L fn α ) x f  is 

positive on (0,a), where 0 < <a ∞ . Then all the marginal distributions of    are Liou-ville 

distributions. In particular, let 1

x

≤ ≤m n , , , and . 

Then the generating density function of  
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for all . 0 < <t a

 
Theorem 4.3 Let . Then the mixed moments of   are given by  x ~ ( ;L fn α ) x
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where  is the mth raw moment of the generating variate r, 

and the superscript [ ]  denotes the ascending factorial; i.e., α α L

m m ii
n

ii
n

m= ∑ = ∑= =1 1, *α α , µ

⋅ α[ ] ( )m = +1  ( )α + −m 1 . 

In particular, we have 
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and 
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Theorem 4.4 Let . Then any amalgamation  of  is distributed 

 where  is the corresponding amalgamation of the Dirichlet 

parameters   

x ~ ( ;L fn α ) )

, '

.

( , ,w w s1 L x

Ls ( 'α1 , , ; )'L α s f ( , , )'α α1 L s

α = ( , , , )α α α1 2 L n

 
Remark 4.2  
 
From equation (4.7), we have the following. 
 
1) When r=1 with probability one, the Liouville distribution reduces to the Dirichlet 

distribution  on , and equation (4.7) reduces to the one corresponding to the 

Dirichlet distribution. 

D n (α) H n

2) The sign of  for 1cov( , )x xi j ≤ <i j  depends on the generating variate r through its first 

and second moments, but not on i and j. Thus, the upper triangular covariance matrix is 

either completely positive or completely negative unless . This means that the 

covariance matrix of the Liouville distribution on the positive orthant has a very restrictive 

form. In chapter 6, we will extend the Liouville distribution in a way that relaxes somehow 

this restrictive form. 

x ∈S n
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3) If  <0 (>0) for some cov( , )x xi j i j≠ ,  then <0 (>0) cov( , )x xr s ∀ ≠r s . Also, if x  

and >0 for some i

∈S n

cov( , )x xi j j≠ ,  then we must have <0 , 

where . Thus, the covariance matrix of   must have one of the 

following two forms: 
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where s s . ign x xi i= +[cov( , )]1

 
Thus, unlike Dirichlet distributions, Liouville-distributed random variables can have 

positive as well as negative covariance. For example, let r  and α >1. Then it is 

easy to show that >0 for all 

~ ( . ,Be 01 1 *

cov( , )x xi j i j≠ , i j n, ≠ +1 . Also, Rayens and Srinivasan 

(1994) considered the Liouville distribution on the simplex with n=2, f u e u( ) exp( )= −β , 

 and values of α α1 23= =, 7, β  in the range from -10 to 100. They showed that near 

, the correlation coefficient of x  and  x  is approximately zero, positive for β = 28 1 2 β > 28 , 

and negative for β < . 28

 
Smith (1994) noted that "important work is left in trying to compare different choices of 

f  to find  the 'best'  Liouville distribution. One criteria [sic] that could be set forth is the 

ability to model correlation close to 1." In addition to that, however, I would note that the 
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covariance matrix of the Liouville distribution has a very restrictive form regardless of the 

choice of the generating density f . This violates one of the criteria for successful simplex 

distributions set forth in chapter 1.  

Because Liouville distributions on the simplex have the ability to model positive 

covariance, it should be clear that they are an improvement over the Dirichlet, (although not 

necessarily over the adaptive Dirichlet distributions). Liouville distributions on the simplex, 

also, do not satisfy complete right neutrality except in the special case where they reduce to 

the Dirichlet distribution (Fang et al., 1990). However, all Liouville distributions on the 

simplex possess complete n-subcompositional independence (in our terminology), as shown 

by Rayens and Srinivasan (1994). Thus, while Liouville distributions on the simplex have a 

less severe independence structure than the Dirichlet (which is one of the criteria proposed 

earlier in this thesis), they may not be flexible enough in this regard for some applications. In 

addition, there are some severe restrictions on the structure of the covariance matrix. 

 
4.2 Generalized Liouville distributions on the simplex 
 

Smith (1994) devotes a complete chapter to generalized Liouville distributions on the 

unit simplex, which he calls generalized Liouville distributions "of the second kind." In this 

section, some of the material in that chapter will be summarized. The interested reader 

should note that the domain of the generalized Liouville distribution of the second kind in 

Smith (1994) is the unit simplex, while the domain of the so-called generalized Liouville 

distribution of the second kind in Gupta and Song (1996) is not. 
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Definition 4.2 A random vector x = +( , , )x x n1 L 1

n 1+

 is said to have a generalized Liouville 

distribution on the simplex  if  has density 

function 

GL h q qn n n
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when  and 0 otherwise, where x ∈ +S n 1 α i > 0 , , and q i > 0 β i > 0  for all i,  is positive 

and continuous, and  
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Notes: 
 
1. A must be non-zero for the density to exist. 

2. The generalized Liouville distribution on the simplex reduces to the standard Liouville 

distribution when β  and qi = 1 i = 1  for all i, and . x ∈ℜ+
n

Unfortunately, Smith was not able to provide many results about the covariance structure 

of  the generalized Liouville distribution. Rayens and Zhang (1993) show that there do exist 

generalized Liouville distributions with positive covariance. Since the class of generalized 

Liouville distributions contains the Liouville distribution as a special case, they clearly must 

be at least as flexible as the Liouville in modeling positive covariance, but it is not clear 

whether they are sufficiently general to satisfy our criteria. In addition, this class of 

distributions is intractable, particularly with respect to its moments as well as its normalizing 

constant. However, Rayens and Zhang (1993) have developed software that enables one to 

calculate the normalizing constant A. 
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Smith concludes that generalized Liouville distributions on the simplex are an 

improvement over Liouville distributions on the simplex because they do have less severe 

independence structures. However, they cannot model some independence concepts such as 

right neutrality for a partition of order 1. In addition, they are not invariant with respect to the 

choice of which variable is the fill-up value.  

 
4.3 Generalized Liouville distributions on the positive orthant 

and conditional generalized Liouville distributions 

In the last section, we summarized some results in Smith (1994) regarding generalized 

Liouville distributions on the simplex. In this section, we summarize some results in Smith 

(1994) regarding generalized Liouville distributions on the positive orthant and conditional 

generalized Liouville distributions. However, these distributions will be introduced following 

the approach used in section 4.1. 

Definition 4.3 A random vector  is said to have a generalized 

Liouville distribution,  GL ,  if  r.

z = +
+( , , )z z n

n
1 1

1L ∈ℜ+

q q fn n n n+
∞

+ + +1 1 1 1 1 1 1( , , , , , , , , ; )α α β βL L L ~z =
d

y ,  where 

~ ( )zi i iz q i= β , , ,  for i nα i > 0 β i > 0 q i > 0 = +1 1, ,L , ~ y = +( , , ..., )y y y n1 2 1

D n n n++ +1 1 1 1 1( , ,α β α βL ) n+1 on H  and r is an independent r.v. with p.d.f. f .  

 
Analogous to the standard Liouville distribution, we will call y  the Dirichlet base, 

( , ,α β α β1 1 1 1L n n+ + )  the Dirichlet parameter, r the generating variate, and f  the 

generating density. 
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It should be noticed immediately that  follows the standard Liouville distribution and 

when 

~z

β β1 1 1 1 1= = = = = =+L Ln q q +n

)

, the generalized Liouville distribution reduces to the 

standard Liouville distribution on . Also,  iff ℜ+
+n 1 z ~ ( , , ;GL fn+

∞
1 α β q

( ~ / ~ , , ~ / ~ ) ~ ,...,z z z z Djj
n

n jj
n

n n1 1
1

1 1
1

1 1 1 1 1=
+

+ =
+

+ + n∑ ∑L (α β α β H n+1+ )  on  and is independent of 

the total size ~z jj
n
=
+∑ 1

1 , which plays the role of r. For a proof of this, see Sivazlian (1981a) and 

Fang et al. (1990). 

The following theorem gives the density function of a generalized Liouville distribution 

on the positive orthant with generating density function  f . 

Theorem 4.5 The density function of a generalized Liouville distribution with generating 

density function f  is given by  
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